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Kramers equation as a model for semiflexible polymers
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We propose to use the Kramers equation for a Brownian particle diffusing in phase space as a model to
describe semiflexible polymer chaif§1063-651X96)50608-2

PACS numbdis): 36.20—r, 05.40+]

The analogy between the description of flexible polymervelocity of the Brownian particle is a fluctuating quantity.
chains, random walks, the theory of Brownian motion, andThus, the Kramers formalism reproduces the essential prop-
quantum mechanics enables one to apply the methods develrty of the polymer chain on large scales and imposes less
oped in the theory of diffusion processes, quantum mecharfestrictions than the Kratky-Porod model on small scales.
ics, and quantum field theory such as path integrals, pertur- We start with the Kramers equation of the particle in the
bation expansionS, and renormalization group to po|ymeabsence of an external force as considered by Uhlenbeck and
physics[1,2]. The Edwards moddB] of a flexible polymer Ornstein[10]. The probability densityw(r,v,t) obeys the
chain, which influenced to a great extent the modern develequation[11]
opment of polymer physics, can be considered in some sense
as a minimal model for flexible polymers: it describes cor- aw(r,v.t) _d d Jd
rectly the essential properties of the polymer chain on large at v\ ”
scales and imposes minimal restrictions on microscopic
lengths. However, there is a large class of polymers thavherev is the velocity,r denotes the position of the particle,
cannot be considered as flexible. Semiflexible polymers playp, = ykTm ! is the diffusion coefficient in the velocity
an important role in various applications such as liquid crysspace,y is the friction coefficient, andn is the mass of the
talline polymers, biopolymers, etc. Semiflexible polymersparticle. The velocity variable in Eql) satisfies the Lange-
are usually described by using the Kratky-Porod m¢ddd].  vin equation
Although the latter permits an exact consideratieae, for
example]6,7]) for a free chain, the computation of different dv
quantities already becomes a difficult task for a free polymer M =~ ), (2
chain. Therefore, it is relevant to look for a more simple
model for ;emiflexibl_e ponmers reproducing on large .Scale%here the noise forcé(t) is Gaussian distributed and is
Fhe essential properties of semlflgxmle polymers and 'mposgharacterized by the correlation function
ing on small scales less restrictions than the Kratky-Poro
model. The weakening of restrictions on small scales is ex- " — _yr
pected to result in a simplified model, which is especially (Fu(OT,(1))=6,,2D, 8(t=t").
desirable for chains with interactions.

The aim of this Rapid Communication is to propose a
model for semiflexible polymers based on the extension o
the analogy between the theory of Brownian motion and
polymer statistics. The main idea is very simple and is based
on the following observation. From the theory of Brownian ot =1 9E, Lt MYaE0€,]
motion it is known that in contrast to the Smoluchowski
equation (Fokker-Planck equation without inertjiathe  where A,=(—v,yv) andD,,=D,6,,0(x—3) with 6(x)
Kramers equatioiiFokker-Planck equation with inenli@os-  being the step function. Equatig8) now has the form of the
sesses a ballistic regime for small tim@ee[8] or, for ex-  Smoluchowski equation. The representation of the latter by
ample, the textbook9]). This is due to the fact that the using path integrals is straightforwafd?2]. The transition
Kramers equation includes the velocity of the Brownian par-probability Py(r,v,At+1t;rq,vg,t) from the pointrg,v, at
ticle as a dynamical variable, so that for sufficiently smalltimet to the pointr,v at timet+ At for an infinitesimal time
times, where the effect of friction is small, this equation pos-interval At is given by
sesses a ballistic regime. It is tempting to interpret this bal-
listic regime in terms of polymer chains as the stiffness ofp,(r,v,At+t;rq,vg,t)
the latter. It appears that the correlation functions for the
velocity and the space coordinate of the partidee Egs. _ S(r —1g— Atvy)

(12,13] coincide exactly with the correlation functions of (477DUAt)a72 0 0

the tangent and monomer coordinates of the Kratky-Porod
polymer chain. In contrast to the Kratky-Porod chain, where
the tangent at the arbitrary point of the polymer is fixed, the

VW + D”a_vw —VEW, D

The variables,v= ¢ form the u space. By using thé vari-
F\ble Eq.(1) can be rewritten as

()

1
_ _ 2
><exp< 4DUAt(V Vo+ Atyvg)<]. (4)
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for a finite time interval as a path integral we divide the Po(r,V,t;ro,Vvo,0)= Dr(t)

interval [0t] in n infinitesimal intervals of the width

At=t/n, use the Markovian property of the transition prob- F{ 1 J‘t
Xexpg —

ability 4D,

In order to get the representation of the transition probability fr(t):r,dr(t)/dt:v
r

(0)=rgq,dr(0)/dt=vq

dt’| — +y—

d’r dr\?
dt’Z dt

0
Po(r,v,t;ro,vo,O)zf dr’f dv’'Py(r,v,t;r’ v’ t") (6)

X Po(r’ V' ,t':ro,Vo,0) (5  The form of the measure in E¢6) is evident from Eq(4).
The evaluation of the path integral can be performed by us-
(t" €[0t]) n—1 times and get in the limit— oo ing the method of steepest descents. This results in

y d/2 ,),3 1+exq_ ’yt) d/2
27D, [1—exp—2y1)] 47D, yt—2+ ytexp(— yt) +2exg — yt)

Po(r ,V,t;ro ,Vo,o) ==

8 ex;{  2D,[1- ezq —291)] [v—voexp — yt)]?

% 1+exp(—yt) N _;1—exp(—9t)
4D, -2+ ytexp—yt) +2exg— 1) | 0T T exp— 1)

(V+vp)

2
} . (7

The Fourier transform of the transition probability The correlation function of the velocity is obtained by using
Po(r,v,t;rg,vo,0), which we will give for reference, is ob- Eq.(7) and performing the average ovey with help of the

tained from Eq(7) as Maxwell distribution,Po(v)~exf —(d/2)v3], as
’ ’ -yt _67Yt dDU
Po(p.k,k",t)=0| k' —ke™ " —p 5 (V(to)V(ty))= 5 exp(— ylta—t]), (12
D, p* herety, t,e (0t). The latt b dt te th
y R s i de e 23 wherety, 2e( ,_). e latter can be used to compute the
ex;{ 248 [27t+4e © ] correlation function([r(t,) —r(t;)]%). The result is

D”kzu—ezm_[’vp"‘(l_eyt)z), ([r(t)=r(t)1?)

2
Zy ’ 4D, 2 It t|+1 o= ylta—ty)) . (13
= —||ta— —exp(— —t))——|.
y 2~ 11 y Yo~ y

)

where the variablep, k, andk’ are respectively conjugated
tor—rg, v, and—vj.

The mean square velocity and the mean square displac
ment of the particle are directly computed from E@8. or

Equations(12,13 can be obtained from Eq$9,10 by set-
ting vS by its mean value given by Edqll). The results
?12,13 were first derived by Uhlenbeck and Ornstéi0]

(see alsd8])).

(8 as There are two independent parametBrs and vy in the
dD Kramers equation. In order to use the Kramers equation to
(vz(t))lvoz “[1—exp(—2yt)]+viexp(—2yt), (9) describe a polymer chain we fixD, according to
Y dD,/y=dkT/m=1. The timet will be identified with the
dD coordinates along the contour of the polymer chain. The
((r(t)— ro)2>|voz L (2yt+4e N 21 _3) Kramers equation for the polymer chain is obtained fridm
Y by replacingt throughs and D,= v/d. Equations(12,13
VS expressed in terms of the polymer quantities read
+ —(1—e "2, 10
7( ) (10 (V(s+sp)V(sp))=exp(—s/l,), (14

Equations(9,10 were first derived by Uhlenbeck and Orn- +5.)— 2y _ + _ _
stein[10] (see also ChandrasekH&). For larget the mean ([ristso)riso) ) =2l[s+pexp=s/lp) ~lpl. - (19
square of the velocity is independent\gf and becomes where | = y~1 is the persistence length of the polymer
chain. Equationg14,15 coincide exactly with the results
db, (11) obtained by using the Kratky-Porod modél|. Despite the
v fact that the tangent of the polymer chain in the present

(VA(t))=
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model is not constant and fluctuates with the mean squargnultiplied with —1) to the exponential of Eq(16). The
value obeying the conditiodv?)=1, the statistical proper- consequence of this coupling is that Eg6) is not more
ties of both the Kratky-Porod model and the Kramers modehormalized and we have to interpret the integrand on the
expressed by correlation functior¢4,15 are the same. right-hand side of Eq(16) as a statistical weight for a con-
Thus, the Kramers model describes the essential propertidigurationr(s). For both free polymer chains and chains with
of the semiflexible polymers on large scales, but in contrastnteraction the average oveg has to be performed with the
to the Kratky-Porod chain, the former imposes less restrichelp of the equilibrium distribution function of the velocity.
tions on small scales. This circumstance results in a simpli- To conclude, we have extended the analogy between the
fication of the tractability of the model. theory of Brownian motion and the statistics of polymer
The statistical weighP(r,v,L;rq,V,,0) associated with chains and have proposed to describe the semiflexible poly-
the configurationr(s) (0ss=<L) of the polymer chain is mer chains by using the Kramers equation. It seems that the

obtained from Eq(6) as a path integral as model based on the Kramers equation gives a minimal model
to describe semiflexible polymers: it describes essential
_ _[r=rdrb/di=v properties of the semiflexible polymers and possesses less
Po(r,v,L;rg,vq,00= Dr(s) - . .
1(0)=rq.dr(s)/dsls—g=Vo restrictions in comparison to the Kratky-Porod model. The

possibility of treatment of the Kramers equation by using

field theoretic methods such as path integrals, perturbation
: expansions, etc. gives hope that the Kramers model will be

convenient for treating complicated systems of semiflexible
(16) polymers such as polyelectrolytes, blends of semiflexible
epolymers, etc.

d?r I Ldr 2
az e gs

d (L
X ex —lefo ds

So far, we have considered the case of a free polym
chain. In this cas®,(r,v,L;rq,v,0) is a probability density | acknowledge stimulating discussions with Y. Rabin, S.
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