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We propose to use the Kramers equation for a Brownian particle diffusing in phase space as a model to
describe semiflexible polymer chains.@S1063-651X~96!50608-2#

PACS number~s!: 36.20.2r, 05.40.1j

The analogy between the description of flexible polymer
chains, random walks, the theory of Brownian motion, and
quantum mechanics enables one to apply the methods devel-
oped in the theory of diffusion processes, quantum mechan-
ics, and quantum field theory such as path integrals, pertur-
bation expansions, and renormalization group to polymer
physics@1,2#. The Edwards model@3# of a flexible polymer
chain, which influenced to a great extent the modern devel-
opment of polymer physics, can be considered in some sense
as a minimal model for flexible polymers: it describes cor-
rectly the essential properties of the polymer chain on large
scales and imposes minimal restrictions on microscopic
lengths. However, there is a large class of polymers that
cannot be considered as flexible. Semiflexible polymers play
an important role in various applications such as liquid crys-
talline polymers, biopolymers, etc. Semiflexible polymers
are usually described by using the Kratky-Porod model@4,5#.
Although the latter permits an exact consideration~see, for
example,@6,7#! for a free chain, the computation of different
quantities already becomes a difficult task for a free polymer
chain. Therefore, it is relevant to look for a more simple
model for semiflexible polymers reproducing on large scales
the essential properties of semiflexible polymers and impos-
ing on small scales less restrictions than the Kratky-Porod
model. The weakening of restrictions on small scales is ex-
pected to result in a simplified model, which is especially
desirable for chains with interactions.

The aim of this Rapid Communication is to propose a
model for semiflexible polymers based on the extension of
the analogy between the theory of Brownian motion and
polymer statistics. The main idea is very simple and is based
on the following observation. From the theory of Brownian
motion it is known that in contrast to the Smoluchowski
equation ~Fokker-Planck equation without inertia!, the
Kramers equation~Fokker-Planck equation with inertia! pos-
sesses a ballistic regime for small times~see@8# or, for ex-
ample, the textbook@9#!. This is due to the fact that the
Kramers equation includes the velocity of the Brownian par-
ticle as a dynamical variable, so that for sufficiently small
times, where the effect of friction is small, this equation pos-
sesses a ballistic regime. It is tempting to interpret this bal-
listic regime in terms of polymer chains as the stiffness of
the latter. It appears that the correlation functions for the
velocity and the space coordinate of the particle@see Eqs.
~12,13!# coincide exactly with the correlation functions of
the tangent and monomer coordinates of the Kratky-Porod
polymer chain. In contrast to the Kratky-Porod chain, where
the tangent at the arbitrary point of the polymer is fixed, the

velocity of the Brownian particle is a fluctuating quantity.
Thus, the Kramers formalism reproduces the essential prop-
erty of the polymer chain on large scales and imposes less
restrictions than the Kratky-Porod model on small scales.

We start with the Kramers equation of the particle in the
absence of an external force as considered by Uhlenbeck and
Ornstein @10#. The probability densityw(r ,v,t) obeys the
equation@11#
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wherev is the velocity,r denotes the position of the particle,
Dv5gkTm21 is the diffusion coefficient in the velocity
space,g is the friction coefficient, andm is the mass of the
particle. The velocity variable in Eq.~1! satisfies the Lange-
vin equation
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where the noise forcef(t) is Gaussian distributed and is
characterized by the correlation function

^ f m~ t ! f n~ t8!&5dmn2Dvd~ t2t8!.

The variablesr ,v[j form them space. By using thej vari-
able Eq.~1! can be rewritten as

]w

]t
5 (

n51

6
]~Anw!

]jn
1 (

n,m51

6

Dmn

]2w

]jn]jm
, ~3!

whereAn5(2v,gv) and Dmn5Dvdmnu(m23) with u(x)
being the step function. Equation~3! now has the form of the
Smoluchowski equation. The representation of the latter by
using path integrals is straightforward@12#. The transition
probability P0(r ,v,Dt1t;r0 ,v0 ,t) from the point r0 ,v0 at
time t to the pointr ,v at timet1Dt for an infinitesimal time
intervalDt is given by
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In order to get the representation of the transition probability
for a finite time interval as a path integral we divide the
interval @0,t# in n infinitesimal intervals of the width
Dt5t/n, use the Markovian property of the transition prob-
ability

P0~r ,v,t;r0 ,v0,0!5E dr 8E dv8P0~r ,v,t;r 8,v8,t8!

3P0~r 8,v8,t8;r0 ,v0,0! ~5!

(t8P@0,t#) n21 times and get in the limitn→`
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The form of the measure in Eq.~6! is evident from Eq.~4!.
The evaluation of the path integral can be performed by us-
ing the method of steepest descents. This results in
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The Fourier transform of the transition probability
P0(r ,v,t;r0 ,v0,0), which we will give for reference, is ob-
tained from Eq.~7! as
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where the variablesp, k, andk8 are respectively conjugated
to r2r0, v, and2v0.

The mean square velocity and the mean square displace-
ment of the particle are directly computed from Eqs.~7! or
~8! as
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Equations~9,10! were first derived by Uhlenbeck and Orn-
stein@10# ~see also Chandrasekhar@8#!. For larget the mean
square of the velocity is independent ofv0 and becomes

^v2~ t !&5
dDv

g
. ~11!

The correlation function of the velocity is obtained by using
Eq. ~7! and performing the average overv0 with help of the
Maxwell distribution,P0(v);exp@2(d/2)v0

2#, as

^v~ t2!v~ t1!&5
dDv

g
exp~2gut22t1u!, ~12!

where t1, t2P(0,t). The latter can be used to compute the
correlation function̂ @r (t2)2r (t1)#

2&. The result is
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Equations~12,13! can be obtained from Eqs.~9,10! by set-
ting v0

2 by its mean value given by Eq.~11!. The results
~12,13! were first derived by Uhlenbeck and Ornstein@10#
~see also@8#!.

There are two independent parametersDv and g in the
Kramers equation. In order to use the Kramers equation to
describe a polymer chain we fixDv according to
dDv /g5dkT/m51. The timet will be identified with the
coordinates along the contour of the polymer chain. The
Kramers equation for the polymer chain is obtained from~1!
by replacingt through s and Dv5g/d. Equations~12,13!
expressed in terms of the polymer quantities read

^v~s1s0!v~s0!&5exp~2s/ l p!, ~14!

^@r ~s1s0!2r ~s0!#
2&52l p@s1 l pexp~2s/ l p!2 l p#, ~15!

where l p[g21 is the persistence length of the polymer
chain. Equations~14,15! coincide exactly with the results
obtained by using the Kratky-Porod model@6#. Despite the
fact that the tangent of the polymer chain in the present
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model is not constant and fluctuates with the mean square
value obeying the condition̂v2&51, the statistical proper-
ties of both the Kratky-Porod model and the Kramers model
expressed by correlation functions~14,15! are the same.
Thus, the Kramers model describes the essential properties
of the semiflexible polymers on large scales, but in contrast
to the Kratky-Porod chain, the former imposes less restric-
tions on small scales. This circumstance results in a simpli-
fication of the tractability of the model.

The statistical weightP0(r ,v,L;r0 ,v0,0) associated with
the configurationr (s) (0<s<L) of the polymer chain is
obtained from Eq.~6! as a path integral as
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So far, we have considered the case of a free polymer
chain. In this caseP0(r ,v,L;r0 ,v0,0) is a probability density
for r and v and is normalized to one. In contrast to the
Brownian particle, the polymer segments couple to the ex-
ternal potential and not to the force. Consequently, in order
to describe a polymer chain in an external field, the interac-
tion energy,Uint5*0

LdsU@r (s),dr (s)/ds#, should be added

~multiplied with 21) to the exponential of Eq.~16!. The
consequence of this coupling is that Eq.~16! is not more
normalized and we have to interpret the integrand on the
right-hand side of Eq.~16! as a statistical weight for a con-
figurationr (s). For both free polymer chains and chains with
interaction the average overv0 has to be performed with the
help of the equilibrium distribution function of the velocity.

To conclude, we have extended the analogy between the
theory of Brownian motion and the statistics of polymer
chains and have proposed to describe the semiflexible poly-
mer chains by using the Kramers equation. It seems that the
model based on the Kramers equation gives a minimal model
to describe semiflexible polymers: it describes essential
properties of the semiflexible polymers and possesses less
restrictions in comparison to the Kratky-Porod model. The
possibility of treatment of the Kramers equation by using
field theoretic methods such as path integrals, perturbation
expansions, etc. gives hope that the Kramers model will be
convenient for treating complicated systems of semiflexible
polymers such as polyelectrolytes, blends of semiflexible
polymers, etc.
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